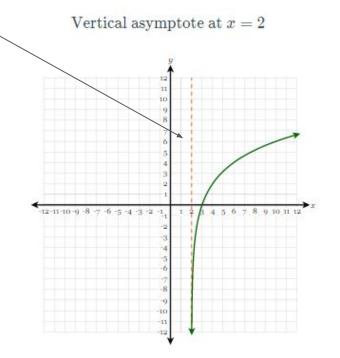
Algebra IIB Math Lesson: April 9, 2020

Learning Target: Students will identify features of logarithmic graphs


Let's Get Started:

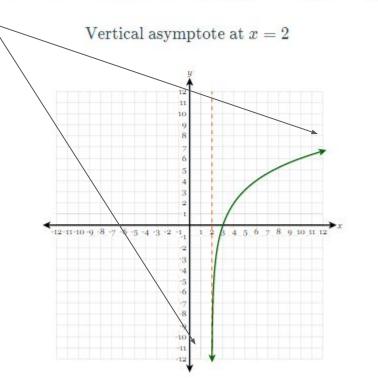
Watch Video: Characteristics of Logarithmic Functions

The video shows how to graph using our graphing calculators. You will be using <u>www.desmos.com</u> (from April 8 lesson). Features we are looking for: ASYMPTOTE - The line the curve approaches but never crosses.

- In a logarithmic equation it is ALWAYS vertical
- It is the opposite sign of the constant that is inside the parentheses with x
- It is written x=2

What are the features of the function $f(x) = 2 \log_2 (x - 2)$ graphed below?

Features we are looking for:


END BEHAVIOR: Focus on the arrows on either end. If the curve continues, where will those arrows eventually end up?

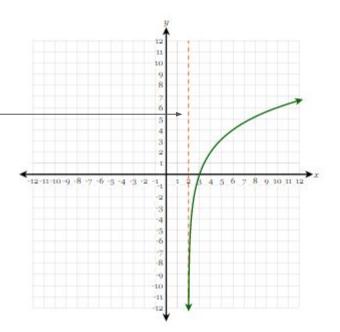
Describe the overall curve: if the right arrow is point up it is an INCREASING (GROWTH) model. If it is going down it is DECREASING (DECAY) model.

Describe the left arrow:

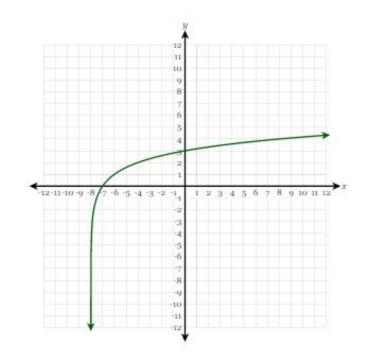
As $x \rightarrow 2$ from the right, $f(x) \rightarrow -\infty$

Describe the right arrow: As $x \rightarrow \infty$, $f(x) \rightarrow \infty$ What are the features of the function $f(x) = 2 \log_2 (x - 2)$ graphed below?

Features we are looking for:

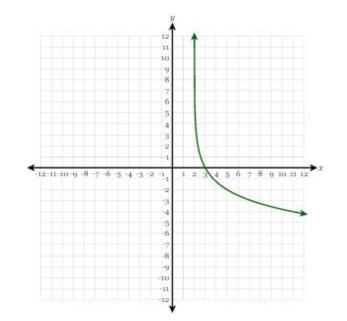

DOMAIN: All the possible x-values of the equation RANGE: All the possible y-values of the equation

In a logarithmic equation the DOMAIN is bounded by the asymptote $(2,\infty)$. –

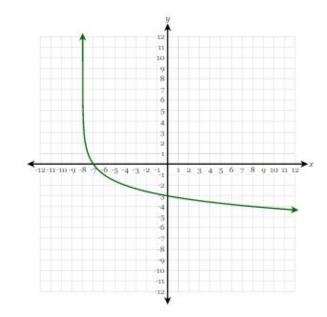

The RANGE is usually all real numbers $(-\infty,\infty)$.

What are the features of the function $f(x) = 2 \log_2 (x - 2)$ graphed below?

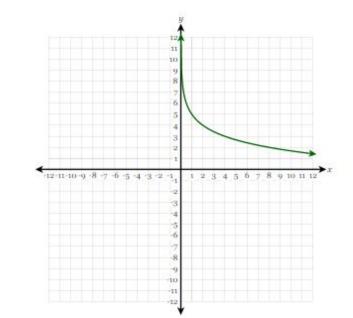
Vertical asymptote at x = 2



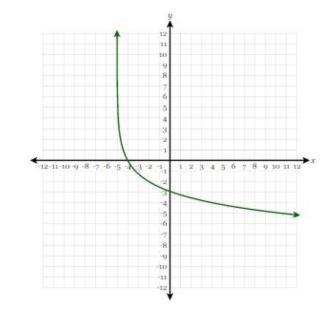
What are the features of the function $f(x) = \log_2 (x+8)$ graphed below?


- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

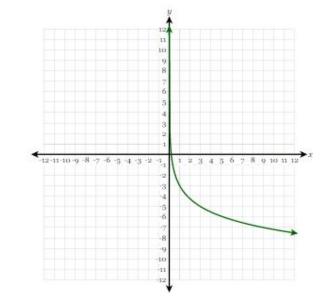
What are the features of the function $f(x) = -2 \log_3 (x-2)$ graphed below?


- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = -\log_2{(x+8)}$ graphed below?

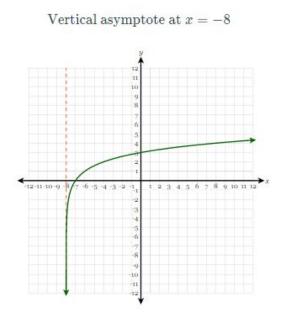

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

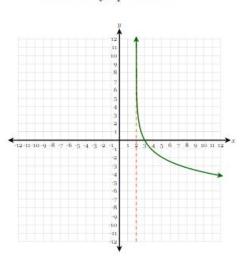
What are the features of the function $f(x) = -\log_2 x + 5$ graphed below?


- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

What are the features of the function $f(x) = -2 \log_3 (x+5)$ graphed below?

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?


What are the features of the function $f(x) = -2 \log_3 x - 3$ graphed below?

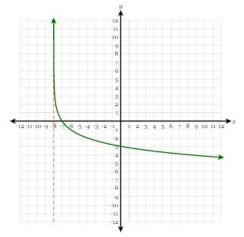

- 1. Is the graph increasing or decreasing?
- 2. Write the equation of the asymptote
- 3. Describe the end behavior
- 4. What is the domain?
- 5. What is the range?

Answers 1 and 2

What are the features of the function $f(x) = \log_2 (x+8)$ graphed below?

What are the features of the function $f(x) = -2 \log_3 (x-2)$ graphed below?

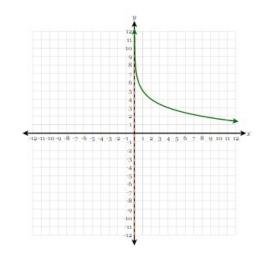
Vertical asymptote at x = 2


The function f(x) is <u>a logarithmic</u> function with a <u>vertical</u> asymptote of <u>x</u> = -8. The range of the function is $(-\infty, \infty)$, and it is <u>increasing</u> on its domain of $(-8, \infty)$. The end behavior on the LEFT side is as <u>x $\rightarrow -8$ (from the right)</u>, <u>y $\rightarrow -\infty$ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow \infty$ </u>.

The function f(x) is a logarithmic function with a <u>vertical</u> asymptote of <u>x = 2</u>. The range of the function is $(-\infty, \infty)$, and it is <u>decreasing</u> on its domain of $(2, \infty)$. The end behavior on the LEFT side is as <u>x $\rightarrow 2$ (from the right)</u>, <u>y $\rightarrow \infty$ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -\infty$ </u>.

Answers 3 and 4

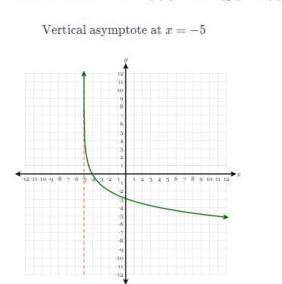
What are the features of the function $f(x) = -\log_2{(x+8)}$ graphed below?


Vertical asymptote at x = -8

The function f(x) is a logarithmic function with a <u>vertical</u> asymptote of <u>x</u> = -8. The range of the function is $(-\infty, \infty)$, and it is <u>decreasing</u> on its domain of $(-8, \infty)$. The end behavior on the LEFT side is as <u>x $\rightarrow -8$ (from the right)</u>, <u>y $\rightarrow \infty$ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -\infty$ </u>.

What are the features of the function $f(x) = -\log_2 x + 5$ graphed below?

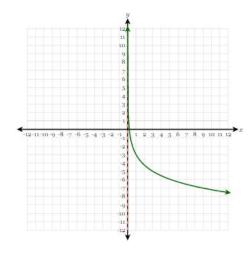
Vertical asymptote at x = 0



The function f(x) is a <u>logarithmic</u> function with a <u>vertical</u> asymptote of <u>x</u> = <u>o</u>. The range of the function is $(-\infty, \infty)$, and it is <u>decreasing</u> on its domain of (\underline{o}, ∞) . The end behavior on the LEFT side is as <u>x $\rightarrow o$ (from the right)</u>, <u>y $\rightarrow \infty$ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -\infty$ </u>.

Answers 5 and 6

Problems taken from Deltamath.com: features of exponential and log functions


What are the features of the function $f(x) = -2 \log_3 x - 3$ graphed below?

What are the features of the function $f(x) = -2 \log_3 (x+5)$ graphed below?

The function f(x) is a <u>logarithmic</u> function with a <u>vertical</u> asymptote of <u>x</u> = -5. The range of the function is (- ∞ , ∞), and it is <u>decreasing</u> on its domain of (-5, ∞). The end behavior on the LEFT side is as <u>x \rightarrow -5 (from the right)</u>, <u>y \rightarrow ∞ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -\infty$ </u>.

The function f(x) is <u>a logarithmic</u> function with a <u>vertical</u> asymptote of <u>x = 0</u>. The range of the function is $(-\infty, \infty)$, and it is <u>decreasing</u> on its domain of $(0, \infty)$. The end behavior on the LEFT side is as <u>x $\rightarrow 0$ (from the right)</u>, <u>y $\rightarrow \infty$ </u>, and the end behavior on the RIGHT side is as <u>x $\rightarrow \infty$ </u>, <u>y $\rightarrow -\infty$ </u>.