> Algebra IIB Math
> Lesson: April 9, 2020

Learning Target:

Students will identify features of logarithmic graphs

Let's Get Started:
 Watch Video: Characteristics of Logarithmic Functions

The video shows how to graph using our graphing calculators. You will be using www. desmos.com (from April 8 lesson).

Features we are looking for:

ASYMPTOTE - The line the curve approaches but never

$$
\text { What are the features of the function } f(x)=2 \log _{2}(x-2) \text { graphed below? }
$$

crosses.

- In a logarithmic equation it is ALWAYS vertical
- It is the opposite sign of the constant that is inside the parentheses with x
- It is written $x=2$

Vertical asymptote at $x=2$

Features we are looking for:

END BEHAVIOR: Focus on the arrows on either end. If the curve continues, where will those arrows eventually end up?
Describe the overall curve: if the right arrow is point up it is an INCREASING (GROWTH) model. If it is going down it is DECREASING (DECAY) model.
Describe the left arrow:
As $x \rightarrow 2$ from the right, $f(x) \rightarrow-\infty$

Describe the right arrow:

As $x \rightarrow \infty, f(x) \rightarrow \infty$

Features we are looking for:

DOMAIN: All the possible x-values of the equation
RANGE: All the possible y-values of the equation

In a logarithmic equation the DOMAIN is bounded by the asymptote $(2, \infty)$.

The RANGE is usually all real numbers $(-\infty, \infty)$.

Vertical asymptote at $x=2$

PRACTICE 1

What are the features of the function $f(x)=\log _{2}(x+8)$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 2

What are the features of the function $f(x)=-2 \log _{3}(x-2)$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 3

What are the features of the function $f(x)=-\log _{2}(x+8)$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 4

What are the features of the function $f(x)=-\log _{2} x+5$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 5

What are the features of the function $f(x)=-2 \log _{3}(x+5)$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

PRACTICE 6

What are the features of the function $f(x)=-2 \log _{3} x-3$ graphed below?

Answer the following questions about the graph to the left on your own paper:

1. Is the graph increasing or decreasing?
2. Write the equation of the asymptote
3. Describe the end behavior
4. What is the domain?
5. What is the range?

Answers 1 and 2

What are the features of the function $f(x)=\log _{2}(x+8)$ graphed below?

Vertical asymptote at $x=-8$

The function $f(x)$ is a logarithmic function with a vertical asymptote of $\mathrm{x}=-8$. The range of the function is $(-\infty, \infty)$, and it is increasing on its domain of $(-8, \infty)$. The end behavior on the LEFT side is as $\mathrm{x} \rightarrow-8$ (from the right), $\mathrm{y} \rightarrow-\infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow \infty$.

What are the features of the function $f(x)=-2 \log _{3}(x-2)$ graphed below?

$$
\text { Vertical asymptote at } x=2
$$

The function $f(x)$ is a logarithmic function with a vertical asymptote of $\mathrm{x}=2$. The range of the function is $(-\infty, \infty)$, and it is decreasing on its domain of $(2, \infty)$. The end behavior on the LEFT side is as $\mathrm{x} \rightarrow 2$ (from the right), $\mathrm{y} \rightarrow \infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-\infty$.

Answers 3 and 4

What are the features of the function $f(x)=-\log _{2}(x+8)$ graphed below?

Vertical asymptote at $x=-8$

The function $f(x)$ is a logarithmic function with a vertical asymptote of $\mathrm{x}=-8$. The range of the function is $(-\infty, \infty)$, and it is decreasing on its domain of $(-8, \infty)$. The end behavior on the LEFT side is as $\mathrm{x} \rightarrow-8$ (from the right), $\mathrm{y} \rightarrow \infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-\infty$.

What are the features of the function $f(x)=-\log _{2} x+5$ graphed below?

Vertical asymptote at $x=0$

The function $f(x)$ is a logarithmic function with a vertical asymptote of $\mathrm{x}=0$. The range of the function is $(-\infty, \infty)$, and it is decreasing on its domain of (\mathbf{o}, ∞). The end behavior on the LEFT side is as $\mathrm{x} \rightarrow \mathrm{o}$ (from the right), $\mathrm{y} \rightarrow \infty$, and the end behavior on the RIGHT side is as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-\infty$.

Answers 5 and 6

What are the features of the function $f(x)=-2 \log _{3}(x+5)$ graphed below?

$$
\text { Vertical asymptote at } x=-5
$$

The function $f(x)$ is a logarithmic function with a vertical asymptote of $\mathrm{x}=-5$. The range of the function is $(-\infty, \infty)$, and it is decreasing on its domain of $(-5, \infty)$. The end behavior on the LEFT side is as $\mathrm{x} \rightarrow-5$ (from the right), $\mathrm{y} \rightarrow \infty$, and the end behavior on the RIGHT side is as $x \rightarrow \infty, y \rightarrow-\infty$.

Problems taken from
Deltamath.com: features of exponential and log functions

What are the features of the function $f(x)=-2 \log _{3} x-3$ graphed below?

$$
\text { Vertical asymptote at } x=0
$$

The function $f(x)$ is a logarithmic function with a vertical asymptote of $x=0$. The range of the function is $(-\infty, \infty)$, and it is decreasing on its domain of ($(0, \infty)$. The end behavior on the LEFT side is as $\mathrm{x} \rightarrow \mathrm{o}$ (from the right), $\mathrm{y} \rightarrow \infty$, and the end behavior on the RIGHT side is as $x \rightarrow \infty, y \rightarrow-\infty$.

